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Chromogenic Calix[4]arene
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A chromogenic calix[4]arene which has within a
molecule both the triester moiety as a metal-binding
site and the azophenol moiety as a coloration site
was synthesized. This calix[4]arene showed the high

Li* selectivity.

Molecular design of so-called "chromogenic crown ethers"” attracts
much attention. They change their absorption (or fluorescence) spectra
upon the binding of metal cations or amines. 1) The coloration process
thus serves as a transducer of the chemical signal (i.e., concentrations)
to the physical signal (i.e., spectral parameters). We have currently
2) The
particular interest in this field arises from the fact that calix[4]aryl

been interested in molecular design of calixarene-based ionophores.

tetraester (1) exhibits the remarkably high selectivity toward Na *.3°6)
This stimulated us to design a new calix[4]arene-based, chromogenic
ionophore. In this paper we address molecular design of a chromogenic
calix[4]larene (2) which has within a molecule both the calix[4]aryl
triester moiety as a metal-binding site and the azophenol moiety as a

coloration site. We have found that compound 2 shows the nearly "perfect”

Li+ selectivity in solid-liquid two-phase solvent extraction.
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It is known that Ba(OH)2 is useful as a template base to selectively
synthesize cone-shaped trialkoxycalix[4]arenes from calix[4]arene-
25,26,27,28-tetrol and alkyl halides.”) In alkylation with ethyl
bromoacetate, however, this base causes the hydrolytic decomposition of
the ester. Instead, we used CaHg2 (7.5 mmol) for the reaction of
calix[4]arene-25,26,27,28-tetrol (2.5 mmol) and ethyl bromoacetate (7.5
mmol) in DMF (25 ml) at 60 ©°C for 24 h, expecting that ca?* is capable of

maintaining the cone conformation as does BaZ+.8)

The product
(calix[4]aryl triester) was recrystallized from chloroform-ethanol: yield
68%, mp 134-1386 °c.9 This calix[4]aryl triester was treated with p-
nitrophenylbenzenediazonium tetrafluoroborate in THF at 0 ©C in the

presence of pyridine.lo)

Compound 2 was isolated by preparative TLC
(chloroform-ethyl acetate (3:1 v/v), silica gel): yield 13%, mp 93-95
oc.9) The 1H NMR spectrum established that 2 adopts a cone conforma-
tion.9)

In calix[4]arene derivatives, the & oy in 1H NMR shifts to lower mag-
netic field and the v o in IR shifts to lower frequency when the OH
1) The s gu (CDCls, 25
°C) and the v o (KBr) for 2 appeared at 7.53 ppm and 3400 cm~! (broad),

respectively, whereas those for 3 (noncyclic analogue) appeared at 5.14

groups form strong intramolecular hydrogen bonds.

ppm and 3500 cm-1 (sharp), respectively. The results show that the OH
group in 2 forms the intramolecular hydrogen bond with the ester groups.
This is also evidenced by the acid-base neutralization (Fig. 1): when 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) was added to the 1,2-dichloroethane
solution, the dissociation of 3 was completed at [DBU]/[3] = 10 whereas
the phenol group in 2 was fully dissociated at [DBU]}/[2] = 104,

The metal selectivity of 2 was estimated by solid-liquid two-phase
solvent extraction. The 1,2-dichloroethane solution (4 ml) containing 2
(5.0 x 1075 mol dm~3) and imidazole (Im: 0.050 mol dm~3) was mixed with
powdered MC1 or MC104 (M = Li*, Na*, K*, Cs*, and NMey*: 0.20 mmol). Im-
idazole was added to facilitate the metal-induced proton-dissociation
(imidazole itself could not induce the dissociation of -2). The mixture
was stirred at 25 °C for 1 h. The equilibrium was attained in 10-20 min.
The extractability (Ex%) was determined from the difference between the
spectrvm of 2 (no dissociation) and that in the presence of excess DBU
(100% dissociation). The results are summarized in Table 1.

When chloride salts were used, 2 extracted Li* (48%) and a trace
amount of Na* (3%) (Fig. 2). When perchlorate salts were used, 2 ex-
tracted Li* (98%) and Na* (56%). The results show that 2 displays the
very high selectivity toward Li*. Why does 2 show the Li* selectivity in

contrast to the Na* selectivity of 1 ? It is presumed that the Na‘* selec-
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Table 1. Extrability (%) of alkali metal and ammonium salts (MX)

M* X~ = Cl- X~ = Cl1l04~
Li* 48 98
Na* 3 56
K* 0
Cs* 0
MeyN* 0
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Fig. 1. Absorbance (640 nm for 2 Fig. 2. Spectral change of 2 (5.00 x
(@ : 5.00 x 107° mol dm~3) and 10-5 mol dm~3) in 1,2-dichloroethane
584 nm for 3 (M : 5.00 x 1075 mol in the presence of MCl (solid) at 25
dm~3)) of the dissociated oC.

azophenolate unit plotted against

the DBU concentration (25 °C,

1,2-dichloroethane).

tivity of 1 stems from the Na* -+ C=0 interaction.3-6) On the other hand,
calix[4]arene itself and tetramethoxycalix[4]arene show the Li* selec-
tivity, indicating that the cavity composed of four phenolic oxygens fits
the size of Li*. 12-14) We measured the 1H NMR spectra of 2 (2.5 mmol dm-
3) in the presence of LiCl04 or NaClO4 (25 mmol dm™3) (30 °C, C1,CDCDClyp).
The & j values for the OCH,CO methylene protons in the presence of Na*
(4.33 plus 4.66 (4H, d each, proximal to azophenol) and 4.46 (2H, s, dis-
tal to azophenol)) appeared at higher magnetic field than those in the ab-

sence of metal (4.52 plus 4.68 and 5.07), whereas those in the presence of
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Li* (4.68 plus 4.85 and 4.91) appeared at lower magnetic field.15%) This
suggests that Li* is bound to 2 as a countercation of the azophenolate

anion and interacts with the three phenclic oxygens.
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